Back to Search Start Over

Idempotent states and the inner linearity property

Authors :
Banica, Teodor
Franz, Uwe
Skalski, Adam
Source :
Bull. Pol. Acad. Sci. Math. 60 (2012), 123-132
Publication Year :
2011

Abstract

We find an analytic formulation of the notion of Hopf image, in terms of the associated idempotent state. More precisely, if $\pi:A\to M_n(\mathbb C)$ is a finite dimensional representation of a Hopf $C^*$-algebra, we prove that the idempotent state associated to its Hopf image $A'$ must be the convolution Ces\`aro limit of the linear functional $\phi=tr\circ\pi$. We discuss then some consequences of this result, notably to inner linearity questions.<br />Comment: 9 pages

Subjects

Subjects :
Mathematics - Quantum Algebra

Details

Database :
arXiv
Journal :
Bull. Pol. Acad. Sci. Math. 60 (2012), 123-132
Publication Type :
Report
Accession number :
edsarx.1112.5018
Document Type :
Working Paper
Full Text :
https://doi.org/10.4064/ba60-2-3