Back to Search
Start Over
Factorization homology of topological manifolds
- Source :
- J. Topol. 8 (2015), no. 4, 1045-1084
- Publication Year :
- 2012
-
Abstract
- Factorization homology theories of topological manifolds, after Beilinson, Drinfeld and Lurie, are homology-type theories for topological $n$-manifolds whose coefficient systems are $n$-disk algebras or $n$-disk stacks. In this work we prove a precise formulation of this idea, giving an axiomatic characterization of factorization homology with coefficients in $n$-disk algebras in terms of a generalization of the Eilenberg--Steenrod axioms for singular homology. Each such theory gives rise to a kind of topological quantum field theory, for which observables can be defined on general $n$-manifolds and not only closed $n$-manifolds. For $n$-disk algebra coefficients, these field theories are characterized by the condition that global observables are determined by local observables in a strong sense. Our axiomatic point of view has a number of applications. In particular, we give a concise proof of the nonabelian Poincar\'e duality of Salvatore, Segal, and Lurie. We present some essential classes of calculations of factorization homology, such as for free $n$-disk algebras and enveloping algebras of Lie algebras, several of which have a conceptual meaning in terms of Koszul duality.<br />Comment: 37 pages. Corrected Proposition 5.3
Details
- Database :
- arXiv
- Journal :
- J. Topol. 8 (2015), no. 4, 1045-1084
- Publication Type :
- Report
- Accession number :
- edsarx.1206.5522
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1112/jtopol/jtv028