Back to Search Start Over

Factorization homology of topological manifolds

Authors :
Ayala, David
Francis, John
Source :
J. Topol. 8 (2015), no. 4, 1045-1084
Publication Year :
2012

Abstract

Factorization homology theories of topological manifolds, after Beilinson, Drinfeld and Lurie, are homology-type theories for topological $n$-manifolds whose coefficient systems are $n$-disk algebras or $n$-disk stacks. In this work we prove a precise formulation of this idea, giving an axiomatic characterization of factorization homology with coefficients in $n$-disk algebras in terms of a generalization of the Eilenberg--Steenrod axioms for singular homology. Each such theory gives rise to a kind of topological quantum field theory, for which observables can be defined on general $n$-manifolds and not only closed $n$-manifolds. For $n$-disk algebra coefficients, these field theories are characterized by the condition that global observables are determined by local observables in a strong sense. Our axiomatic point of view has a number of applications. In particular, we give a concise proof of the nonabelian Poincar\'e duality of Salvatore, Segal, and Lurie. We present some essential classes of calculations of factorization homology, such as for free $n$-disk algebras and enveloping algebras of Lie algebras, several of which have a conceptual meaning in terms of Koszul duality.<br />Comment: 37 pages. Corrected Proposition 5.3

Details

Database :
arXiv
Journal :
J. Topol. 8 (2015), no. 4, 1045-1084
Publication Type :
Report
Accession number :
edsarx.1206.5522
Document Type :
Working Paper
Full Text :
https://doi.org/10.1112/jtopol/jtv028