Back to Search
Start Over
The extended affine Lie algebra associated with a connected non-negative unit form
- Source :
- J. Algebra 409 (2014): 148-161
- Publication Year :
- 2012
-
Abstract
- Given a connected non-negative unit form we construct an extended affine Lie algebra by giving a Chevalley basis for it. We also obtain this algebra as a quotient of an algebra defined by means of generalized Serre relations by M. Barot, D. Kussin and H. Lenzing. This is done in an analogous way to the construction of the simply-laced affine Kac-Moody algebras. Thus, we obtain a family of extended affine Lie algebras of simply-laced Dynkin type and arbitrary nullity. Furthermore, there is a one-to-one correspondence between these Lie algebras and the equivalence classes of connected non-negative unit forms.<br />Comment: 12 pages, stated converse of Thm 1.1 explicitely and edited Thm. 4.5 accordingly. Final version, accepted for publication in J. Algebra
- Subjects :
- Mathematics - Representation Theory
17B67
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Algebra 409 (2014): 148-161
- Publication Type :
- Report
- Accession number :
- edsarx.1209.4380
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2014.03.029