Back to Search
Start Over
Correlations in the $n\rightarrow 0$ limit of the dense O(n) loop model
- Source :
- J. Phys. A: Math. Theor. 46 (2013) 145002 (18pp)
- Publication Year :
- 2012
-
Abstract
- The two-dimensional dense O(n) loop model for $n=1$ is equivalent to the bond percolation and for $n=0$ to the dense polymers or spanning trees. We consider the boundary correlations on the half space and calculate the probability $P_b$ that a cluster of bonds has a single common point with the boundary. In the limit $n\rightarrow 0$, we find an analytical expression for $P_b$ using the generalized Kirchhoff theorem.<br />Comment: 23 pages, 14 figures
- Subjects :
- Condensed Matter - Statistical Mechanics
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Phys. A: Math. Theor. 46 (2013) 145002 (18pp)
- Publication Type :
- Report
- Accession number :
- edsarx.1212.1032
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/1751-8113/46/14/145002