Back to Search Start Over

Correlations in the $n\rightarrow 0$ limit of the dense O(n) loop model

Authors :
Poghosyan, V. S.
Priezzhev, V. B.
Source :
J. Phys. A: Math. Theor. 46 (2013) 145002 (18pp)
Publication Year :
2012

Abstract

The two-dimensional dense O(n) loop model for $n=1$ is equivalent to the bond percolation and for $n=0$ to the dense polymers or spanning trees. We consider the boundary correlations on the half space and calculate the probability $P_b$ that a cluster of bonds has a single common point with the boundary. In the limit $n\rightarrow 0$, we find an analytical expression for $P_b$ using the generalized Kirchhoff theorem.<br />Comment: 23 pages, 14 figures

Details

Database :
arXiv
Journal :
J. Phys. A: Math. Theor. 46 (2013) 145002 (18pp)
Publication Type :
Report
Accession number :
edsarx.1212.1032
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1751-8113/46/14/145002