Back to Search
Start Over
Small snarks with large oddness
- Publication Year :
- 2012
-
Abstract
- We estimate the minimum number of vertices of a cubic graph with given oddness and cyclic connectivity. We prove that a bridgeless cubic graph $G$ with oddness $\omega(G)$ other than the Petersen graph has at least $5.41\cdot\omega(G)$ vertices, and for each integer $k$ with $2\le k\le 6$ we construct an infinite family of cubic graphs with cyclic connectivity $k$ and small oddness ratio $|V(G)|/\omega(G)$. In particular, for cyclic connectivity 2, 4, 5, and 6 we improve the upper bounds on the oddness ratio of snarks to 7.5, 13, 25, and 99 from the known values 9, 15, 76, and 118, respectively. In addition, we construct a cyclically 4-connected snark of girth 5 with oddness 4 on 44 vertices, improving the best previous value of 46.
- Subjects :
- Computer Science - Discrete Mathematics
Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1212.3641
- Document Type :
- Working Paper