Back to Search
Start Over
Harmonic Vector Fields on Space Forms
- Publication Year :
- 2013
-
Abstract
- A vector field s on a Riemannian manifold M is said to be harmonic if there exists a member of a 2-parameter family of generalised Cheeger-Gromoll metrics on TM with respect to which s is a harmonic section. If M is a simply-connected non-flat space form other than the 2-sphere, examples are obtained of conformal vector fields that are harmonic. In particular, the harmonic Killing fields and conformal gradient fields are classified, a loop of non-congruent harmonic conformal fields on the hyperbolic plane constructed, and the 2-dimensional classification achieved for conformal fields. A classification is then given of all harmonic quadratic gradient fields on spheres.<br />Comment: 29 pages. This is such a complete overhaul of arXiv:math/0703060 that we submit it as new article
- Subjects :
- Mathematics - Differential Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1301.6075
- Document Type :
- Working Paper