Back to Search Start Over

Planck 2013 results. XIX. The integrated Sachs-Wolfe effect

Authors :
Planck Collaboration
Ade, P. A. R.
Aghanim, N.
Armitage-Caplan, C.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B.
Bartlett, J. G.
Bartolo, N.
Battaner, E.
Benabed, K.
Benoît, A.
Benoit-Lévy, A.
Bernard, J. -P.
Bersanelli, M.
Bielewicz, P.
Bobin, J.
Bock, J. J.
Bonaldi, A.
Bonavera, L.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Bridges, M.
Bucher, M.
Burigana, C.
Butler, R. C.
Cardoso, J. -F.
Catalano, A.
Challinor, A.
Chamballu, A.
Chiang, H. C.
Chiang, L. -Y
Christensen, P. R.
Church, S.
Clements, D. L.
Colombi, S.
Colombo, L. P. L.
Couchot, F.
Coulais, A.
Crill, B. P.
Curto, A.
Cuttaia, F.
Danese, L.
Davies, R. D.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Delouis, J. -M.
Désert, F. -X.
Dickinson, C.
Diego, J. M.
Dolag, K.
Dole, H.
Donzelli, S.
Doré, O.
Douspis, M.
Dupac, X.
Efstathiou, G.
Enßlin, T. A.
Eriksen, H. K.
Fergusson, J.
Finelli, F.
Forni, O.
Fosalba, P.
Frailis, M.
Franceschi, E.
Frommert, M.
Galeotta, S.
Ganga, K.
Génova-Santos, R. T.
Giard, M.
Giardino, G.
Giraud-Héraud, Y.
González-Nuevo, J.
Górski, K. M.
Gratton, S.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Hanson, D.
Harrison, D.
Henrot-Versillé, S.
Hernández-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Ho, S.
Hobson, M.
Holmes, W. A.
Hornstrup, A.
Hovest, W.
Huffenberger, K. M.
Ilić, S.
Jaffe, A. H.
Jaffe, T. R.
Jasche, J.
Jones, W. C.
Juvela, M.
Keihänen, E.
Keskitalo, R.
Kisner, T. S.
Knoche, J.
Knox, L.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lähteenmäki, A.
Lamarre, J. -M.
Langer, M.
Lasenby, A.
Laureijs, R. J.
Lawrence, C. R.
Leahy, J. P.
Leonardi, R.
Lesgourgues, J.
Liguori, M.
Lilje, P. B.
Linden-Vørnle, M.
López-Caniego, M.
Lubin, P. M.
Macías-Pérez, J. F.
Maffei, B.
Maino, D.
Mandolesi, N.
Mangilli, A.
Marcos-Caballero, A.
Maris, M.
Marshall, D. J.
Martin, P. G.
Martínez-González, E.
Masi, S.
Massardi, M.
Matarrese, S.
Matthai, F.
Mazzotta, P.
Meinhold, P. R.
Melchiorri, A.
Mendes, L.
Mennella, A.
Migliaccio, M.
Mitra, S.
Miville-Deschênes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Moss, A.
Munshi, D.
Naselsky, P.
Nati, F.
Natoli, P.
Netterfield, C. B.
Nørgaard-Nielsen, H. U.
Noviello, F.
Novikov, D.
Novikov, I.
Osborne, S.
Oxborrow, C. A.
Paci, F.
Pagano, L.
Pajot, F.
Paoletti, D.
Partridge, B.
Pasian, F.
Patanchon, G.
Perdereau, O.
Perotto, L.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Pietrobon, D.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poutanen, T.
Pratt, G. W.
Prézeau, G.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Racine, B.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renault, C.
Renzi, A.
Ricciardi, S.
Riller, T.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Roudier, G.
Rowan-Robinson, M.
Rubiño-Martín, J. A.
Rusholme, B.
Sandri, M.
Santos, D.
Savini, G.
Schaefer, B. M.
Schiavon, F.
Scott, D.
Seiffert, M. D.
Shellard, E. P. S.
Spencer, L. D.
Starck, J. -L.
Stolyarov, V.
Stompor, R.
Sudiwala, R.
Sunyaev, R.
Sureau, F.
Sutter, P.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Tavagnacco, D.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tucci, M.
Tuovinen, J.
Umana, G.
Valenziano, L.
Valiviita, J.
Van Tent, B.
Varis, J.
Viel, M.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L. A.
Wandelt, B. D.
White, M.
Xia, J. -Q.
Yvon, D.
Zacchei, A.
Zonca, A.
Publication Year :
2013

Abstract

Based on CMB maps from the 2013 Planck Mission data release, this paper presents the detection of the ISW effect, i.e., the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4 sigma, depending on which method is used. We investigate three separate approaches, which cover essentially all previous studies, as well as breaking new ground. (i) Correlation of the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection is made using the lensing-induced bispectrum; the correlation between lensing and the ISW effect has a significance close to 2.5 sigma. (ii) Cross-correlation with tracers of LSS, yielding around 3 sigma significance, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) Aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yields a 4 sigma signal when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale compared to expectations. More recent catalogues give more moderate results, ranging from negligible to 2.5 sigma at most, but with a more consistent scale and amplitude, the latter being still slightly above what is expected from numerical simulations within LCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, which had already mapped these scales to the limits of cosmic variance. Planck's broader frequency coverage confirms that the signal is achromatic, bolstering the case for ISW detection. As a final step we use tracers of large-scale structure to filter the CMB data, presenting maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the current accelerated expansion of the Universe.<br />Comment: 24 pages, 11 figures. This paper is one of a set associated with the 2013 data release from Planck. Updated version: minor corrections have been made

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1303.5079
Document Type :
Working Paper
Full Text :
https://doi.org/10.1051/0004-6361/201321526