Back to Search
Start Over
Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models
- Publication Year :
- 2013
-
Abstract
- We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consistent proto-cell toy model in which the preferentially synthesized chemical is a precursor for the cell membrane, and show that such proto-cells can exhibit sustainable homeostatic growth when fed with any nutrient diffusing through the membrane, provided that nutrient is metabolized at a sufficient rate.
- Subjects :
- Quantitative Biology - Molecular Networks
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1303.7439
- Document Type :
- Working Paper