Back to Search
Start Over
Minimal singular metrics of a line bundle admitting no Zariski-decomposition
- Publication Year :
- 2013
-
Abstract
- We give a concrete expression of a minimal singular metric of a big line bundle on a compact K\"ahler manifold which is the total space of a toric bundle over a complex torus. In this class of manifolds, Nakayama constructed examples which have line bundles admitting no Zariski-decomposition even after any proper modifications. As an application, we discuss the Zariski-closedness of non-nef loci and the openness conjecture of Demailly and Koll\'{a}r in this class.<br />Comment: Minor format edition, 26 pages, 4 figures
- Subjects :
- Mathematics - Algebraic Geometry
Mathematics - Complex Variables
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1304.1289
- Document Type :
- Working Paper