Back to Search
Start Over
Combinatorics of non-ambiguous trees
- Publication Year :
- 2013
-
Abstract
- This article investigates combinatorial properties of non-ambiguous trees. These objects we define may be seen either as binary trees drawn on a grid with some constraints, or as a subset of the tree-like tableaux previously defined by Aval, Boussicault and Nadeau. The enumeration of non-ambiguous trees satisfying some additional constraints allows us to give elegant combinatorial proofs of identities due to Carlitz, and to Ehrenborg and Steingr\'imsson. We also provide a hook formula to count the number of non-ambiguous trees with a given underlying tree. Finally, we use non-ambiguous trees to describe a very natural bijection between parallelogram polyominoes and binary trees.<br />Comment: 25 pages, 26 figures
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1305.3716
- Document Type :
- Working Paper