Back to Search
Start Over
Equilateral sets in uniformly smooth Banach spaces
- Source :
- Mathematika 60 (2014) 219-231
- Publication Year :
- 2013
-
Abstract
- Let $X$ be an infinite dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exists a constant $\lambda>0$ and an infinite sequence $(x_i)_{i=1}^\infty\subset X$ such that $\|x_i-x_j\|=\lambda$ for all $i\neq j$.<br />Comment: 11 pages
- Subjects :
- Mathematics - Functional Analysis
46B20, 46B04
Subjects
Details
- Database :
- arXiv
- Journal :
- Mathematika 60 (2014) 219-231
- Publication Type :
- Report
- Accession number :
- edsarx.1305.6750
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1112/S0025579313000260