Back to Search Start Over

Equilateral sets in uniformly smooth Banach spaces

Authors :
Freeman, D.
Odell, E.
Sari, B.
Schlumprecht, Th.
Source :
Mathematika 60 (2014) 219-231
Publication Year :
2013

Abstract

Let $X$ be an infinite dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exists a constant $\lambda>0$ and an infinite sequence $(x_i)_{i=1}^\infty\subset X$ such that $\|x_i-x_j\|=\lambda$ for all $i\neq j$.<br />Comment: 11 pages

Details

Database :
arXiv
Journal :
Mathematika 60 (2014) 219-231
Publication Type :
Report
Accession number :
edsarx.1305.6750
Document Type :
Working Paper
Full Text :
https://doi.org/10.1112/S0025579313000260