Back to Search Start Over

Bias dependence of tunneling magnetoresistance in magnetic tunnel junctions with asymmetric barriers

Authors :
Kalitsov, Alan
Zermatten, Pierre-Jean
Bonell, Frédéric
Gaudin, Gilles
Andrieu, Stéphane
Tiusan, Coriolan
Chshiev, Mairbek
Velev, Julian P.
Publication Year :
2013

Abstract

The transport properties of magnetic tunnel junctions (MTJs) are very sensitive to interface modifications. In this work we investigate both experimentally and theoretically the effect of asymmetric barrier modifications on the bias dependence of tunneling magnetoresistance (TMR) in single crystal Fe/MgO-based MTJs with (i) one crystalline and one rough interface and (ii) with a monolayer of O deposited at the crystalline interface. In both cases we observe an asymmetric bias dependence of TMR and a reversal of its sign at large bias. We propose a general model to explain the bias dependence in these and similar systems reported earlier. The model predicts the existence of two distinct TMR regimes: (i) tunneling regime when the interface is modified with layers of a different insulator and (ii) resonant regime when thin metallic layers are inserted at the interface. We demonstrate that in the tunneling regime negative TMR is due to the high voltage which overcomes the exchange splitting in the electrodes, while the asymmetric bias dependence of TMR is due to the interface transmission probabilities. In the resonant regime inversion of TMR could happen at zero voltage depending on the alignment of the resonance levels with the Fermi surfaces of the electrodes. Moreover, the model predicts a regime in which TMR has different sign at positive and negative bias suggesting possibilities of combining memory with logic functions.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1309.4357
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/0953-8984/25/49/496005