Back to Search Start Over

Semantic Stability in Social Tagging Streams

Authors :
Wagner, Claudia
Singer, Philipp
Strohmaier, Markus
Huberman, Bernardo A.
Publication Year :
2013

Abstract

One potential disadvantage of social tagging systems is that due to the lack of a centralized vocabulary, a crowd of users may never manage to reach a consensus on the description of resources (e.g., books, users or songs) on the Web. Yet, previous research has provided interesting evidence that the tag distributions of resources may become semantically stable over time as more and more users tag them. At the same time, previous work has raised an array of new questions such as: (i) How can we assess the semantic stability of social tagging systems in a robust and methodical way? (ii) Does semantic stabilization of tags vary across different social tagging systems and ultimately, (iii) what are the factors that can explain semantic stabilization in such systems? In this work we tackle these questions by (i) presenting a novel and robust method which overcomes a number of limitations in existing methods, (ii) empirically investigating semantic stabilization processes in a wide range of social tagging systems with distinct domains and properties and (iii) detecting potential causes for semantic stabilization, specifically imitation behavior, shared background knowledge and intrinsic properties of natural language. Our results show that tagging streams which are generated by a combination of imitation dynamics and shared background knowledge exhibit faster and higher semantic stability than tagging streams which are generated via imitation dynamics or natural language streams alone.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1311.1162
Document Type :
Working Paper