Back to Search
Start Over
Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation
- Publication Year :
- 2013
-
Abstract
- Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. A retrospective study involving 10 glioblastoma patients has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioblastoma, and may therefore provide a tool to make target delineation more objective and automated.
- Subjects :
- Physics - Medical Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1311.5902
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/0031-9155/59/3/747