Back to Search
Start Over
On the $\kappa$-Dirac Oscillator revisited
- Source :
- Physics Letters B 731, 327 (2014)
- Publication Year :
- 2013
-
Abstract
- This Letter is based on the $\kappa$-Dirac equation, derived from the $\kappa$-Poincar\'{e}-Hopf algebra. It is shown that the $\kappa$-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, $\mathbf{p}\to\mathbf{p}-im\omega\beta\mathbf{r}$, in the $\kappa$-Dirac equation, one obtains the $\kappa$-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where $\varepsilon=0$, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.<br />Comment: 5 pages, no figures, accepted for publication in Physics Letters B
- Subjects :
- High Energy Physics - Theory
Mathematical Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Physics Letters B 731, 327 (2014)
- Publication Type :
- Report
- Accession number :
- edsarx.1312.2973
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.physletb.2014.02.054