Back to Search
Start Over
Inner derivations of exceptional Lie algebras in prime characteristic
- Publication Year :
- 2014
-
Abstract
- It is well-known that every derivation of a semisimple Lie algebra $L$ over an algebraically closed field $F$ with characteristic zero is inner. The aim of this paper is to show what happens if the characteristic of $F$ is prime with $L$ an exceptional Lie algebra. We prove that if $L$ is a Chevalley Lie algebra of type $\{G_2,F_4,E_6,E_7,E_8\}$ over a field of characteristic $p$ then the derivations of $L$ are inner except in the cases $G_2$ with $p=2$, $E_6$ with $p=3$ and $E_7$ with $p=2$.
- Subjects :
- Mathematics - Rings and Algebras
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1402.2212
- Document Type :
- Working Paper