Back to Search
Start Over
A note on coloring vertex-transitive graphs
- Source :
- Electronic Journal of Combinatorics. Vol. 22(2), 2015, #P2.1
- Publication Year :
- 2014
-
Abstract
- We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \left\{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\right\}$ and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin-Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Journal :
- Electronic Journal of Combinatorics. Vol. 22(2), 2015, #P2.1
- Publication Type :
- Report
- Accession number :
- edsarx.1404.6550
- Document Type :
- Working Paper