Back to Search Start Over

A note on coloring vertex-transitive graphs

Authors :
Cranston, Daniel W.
Rabern, Landon
Source :
Electronic Journal of Combinatorics. Vol. 22(2), 2015, #P2.1
Publication Year :
2014

Abstract

We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \left\{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\right\}$ and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin-Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Journal :
Electronic Journal of Combinatorics. Vol. 22(2), 2015, #P2.1
Publication Type :
Report
Accession number :
edsarx.1404.6550
Document Type :
Working Paper