Back to Search Start Over

Lacunary ideal convergence in probabilistic normed spaces

Authors :
Hazarika, Bipan
Esi, Ayhan
Publication Year :
2014

Abstract

An ideal $I$ is a family of subsets of positive integers $\mathbb{N}$ which is closed under taking finite unions and subsets of its elements. A sequence $(x_k)$ of real numbers is said to be lacunary $I$-convergent to a real number $\ell$, if for each $ \varepsilon> 0$ the set $$\left\{r\in \mathbb{N}:\frac{1}{h_r}\sum_{k\in J_r} |x_{k}-\ell|\geq \varepsilon\right\}$$ belongs to $I.$ The aim of this paper is to study the notion of lacunary $I$-convergence in probabilistic normed spaces as a variant of the notion of ideal convergence. Also lacunary $I$-limit points and lacunary $I$-cluster points have been defined and the relation between them has been established. Furthermore, lacunary-Cauchy and lacunary $I$-Cauchy sequences are introduced and studied. Finally, we provided example which shows that our method of convergence in probabilistic normed spaces is more general.<br />Comment: no comments

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1405.3619
Document Type :
Working Paper