Back to Search Start Over

Dynamic alpha-invariants of del Pezzo surfaces

Authors :
Cheltsov, Ivan
Martinez-Garcia, Jesus
Source :
Int Math Res Notices (2016) Vol. 10. 2994-3028
Publication Year :
2014

Abstract

For every smooth del Pezzo surface $S$, smooth curve $C\in|-K_{S}|$ and $\beta\in(0,1]$, we compute the $\alpha$-invariant of Tian $\alpha(S,(1-\beta)C)$ and prove the existence of K\"ahler--Einstein metrics on $S$ with edge singularities along $C$ of angle $2\pi\beta$ for $\beta$ in certain interval. In particular we give lower bounds for the invariant $R(S,C)$, introduced by Donaldson as the supremum of all $\beta\in(0,1]$ for which such a metric exists.<br />Comment: 21 pages

Details

Database :
arXiv
Journal :
Int Math Res Notices (2016) Vol. 10. 2994-3028
Publication Type :
Report
Accession number :
edsarx.1405.5161
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/imrn/rnv229