Back to Search Start Over

A Dynamic Approach to Linear Statistical Calibration with an Application in Microwave Radiometry

Authors :
Rivers, Derick L.
Boone, Edward L.
Publication Year :
2014

Abstract

The problem of statistical calibration of a measuring instrument can be framed both in a statistical context as well as in an engineering context. In the first, the problem is dealt with by distinguishing between the 'classical' approach and the 'inverse' regression approach. Both of these models are static models and are used to estimate exact measurements from measurements that are affected by error. In the engineering context, the variables of interest are considered to be taken at the time at which you observe it. The Bayesian time series analysis method of Dynamic Linear Models (DLM) can be used to monitor the evolution of the measures, thus introducing an dynamic approach to statistical calibration. The research presented employs the use of Bayesian methodology to perform statistical calibration. The DLM's framework is used to capture the time-varying parameters that maybe changing or drifting over time. Two separate DLM based models are presented in this paper. A simulation study is conducted where the two models are compared to some well known 'static' calibration approaches in the literature from both the frequentist and Bayesian perspectives. The focus of the study is to understand how well the dynamic statistical calibration methods performs under various signal-to-noise ratios, r. The posterior distributions of the estimated calibration points as well as the 95% coverage intervals are compared by statistical summaries. These dynamic methods are applied to a microwave radiometry data set.<br />Comment: 26 pages, 10 figures

Subjects

Subjects :
Statistics - Computation

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1406.7863
Document Type :
Working Paper