Back to Search
Start Over
Gas physical conditions and kinematics of the giant outflow Ou4
- Source :
- A&A 570, A105 (2014)
- Publication Year :
- 2014
-
Abstract
- Ou4 is a recently discovered bipolar outflow with a projected size of more than one degree in the plane of the sky. It is apparently centred on the young stellar cluster -whose most massive representative is the triple system HR8119- inside the HII region Sh 2-129. The driving source, the nature, and the distance of Ou4 are not known. Deep narrow-band imagery of the whole nebula at arcsec resolution was obtained to study its morphology. Long-slit spectroscopy of the tips of the bipolar lobes was secured to determine the gas ionization mechanism, physical conditions, and line-of-sight velocities. An estimate of the proper motions at the tip of the south lobe using archival images is attempted. The existing multi-wavelength data for Sh 2-129 and HR 8119 are also comprehensively reviewed. The morphology of Ou4, its emission-line spatial distribution, line flux ratios, and the kinematic modelling adopting a bow-shock parabolic geometry, illustrate the expansion of a shock-excited fast collimated outflow. The radial velocities and reddening are consistent with those of Sh 2-129 and HR 8119. The improved determination of the distance to HR8119 (composed of two B0 V and one B0.5 V stars) and Sh 2-129 is 712 pc. We identify in WISE images a 5 arcmin-radius (1 pc at the distance above) bubble of emission at 22 micron emitted by hot (107 K) dust, located inside the central part of Ou4 and corresponding to several [O III] features of Ou4. The apparent position and the properties studied in this work are consistent with the hypothesis that Ou4 is located inside the Sh 2-129 HII region, suggesting that it was launched some 90 000 yrs ago by HR8119. The outflow total kinetic energy is estimated to be ~4e47~ergs. However, the alternate possibility that Ou4 is a bipolar planetary nebula, or the result of an eruptive event on a massive AGB or post-AGB star not yet identified, cannot be ruled out.<br />Comment: Accepted for publication in Astronomy and Astrophysics. Also available at http://hal.archives-ouvertes.fr/hal-01022286
- Subjects :
- Astrophysics - Solar and Stellar Astrophysics
Subjects
Details
- Database :
- arXiv
- Journal :
- A&A 570, A105 (2014)
- Publication Type :
- Report
- Accession number :
- edsarx.1407.4617
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/201322718