Back to Search Start Over

Weak total resolving sets in graphs

Authors :
Javaid, Imran
Salman, Muhammad
Murtaza, Mahr
Iftikhar, Farheen
Imran, Muhammad
Publication Year :
2014

Abstract

A set $W$ of vertices of $G$ is said to be a weak total resolving set for $G$ if $W$ is a resolving set for $G$ as well as for each $w\in W$, there is at least one element in $W-\{w\}$ that resolves $w$ and $v$ for every $v\in V(G)- W$. Weak total metric dimension of $G$ is the smallest order of a weak total resolving set for $G$. This paper includes the investigation of weak total metric dimension of trees. Also, weak total resolving number of a graph as well as randomly weak total $k$-dimensional graphs are defined and studied in this paper. Moreover, some characterizations and realizations regarding weak total resolving number and weak total metric dimension are given.

Subjects

Subjects :
Mathematics - Combinatorics
05C12

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1408.0649
Document Type :
Working Paper