Back to Search
Start Over
Relativistic all-order calculations of Th, Th$^{+}$ and Th$^{2+}$ atomic properties
- Publication Year :
- 2014
-
Abstract
- Excitation energies, term designations, and $g$-factors of Th, Th$^{+}$ and Th$^{2+}$ are determined using a relativistic hybrid configuration interaction (CI) + all-order approach that combines configuration interaction and linearized coupled-cluster methods. The results are compared with other theory and experiment where available. We find some "vanishing" $g$-factors, similar to those known in lanthanide spectra. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for Th$^{2+}$. To estimate the uncertainties of our results, we compared our values with the available experimental lifetimes for higher $5f7p\ ^3G_{4}$, $7s7p\ ^3P_{0}$, $7s7p\ ^3P_{1}$, and $6d7p\ ^3F_{4}$ levels of Th$^{2+}$. These calculations provide a benchmark test of the CI+all-order method for heavy systems with several valence electrons and yield recommended values for transition rates and lifetimes of Th$^{2+}$.<br />Comment: 13 pages
- Subjects :
- Physics - Atomic Physics
Physics - Optics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1408.3067
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevA.90.032512