Back to Search
Start Over
Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors
- Publication Year :
- 2014
-
Abstract
- The anisotropic nature of the new two-dimensional (2D) material phosphorene, in contrast to other 2D materials such as graphene and transition metal dichalcogenide (TMD) semiconductors, allows excitons to be confined in a quasi-one-dimensional (1D) space predicted in theory, leading to remarkable phenomena arising from the reduced dimensionality and screening. Here, we report a trion (charged exciton) binding energy of 190 meV in few-layer phosphorene at room temperature, which is nearly one to two orders of magnitude larger than those in 2D TMD semiconductors (20-30 meV) and quasi-2D quantum wells (1-5 meV). Such a large binding energy has only been observed in truly 1D materials such as carbon nanotubes, whose optoelectronic applications have been severely hurdled by their intrinsically small optical cross-sections. Phosphorene offers an elegant way to overcome this hurdle by enabling quasi-1D excitonic and trionic behaviors in a large 2D area, allowing optoelectronic integration. We experimentally validated the quasi-1D nature of excitonic and trionic dynamics in phospherene by demonstrating completely linearly polarized light emission from excitons and trions. The implications of the extraordinarily large trion binding energy in a higher-than-one-dimensional material are far-reaching. It provides a room-temperature 2D platform to observe the fundamental many-body interactions in the quasi-1D region. The strong photoluminescence emission in phosphorene has been electrically tuned over a large spectral range at room temperature, which opens a new route for tunable light sources.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1411.6124
- Document Type :
- Working Paper