Back to Search Start Over

Electronic transport and dynamics in correlated heterostructures

Authors :
Mazza, G.
Amaricci, A.
Capone, M.
Fabrizio, M.
Source :
Phys. Rev. B 91, 195124 (2015)
Publication Year :
2014

Abstract

We investigate by means of the time-dependent Gutzwiller approximation the transport properties of a strongly-correlated slab subject to Hubbard repulsion and connected with to two metallic leads kept at a different electrochemical potential. We focus on the real-time evolution of the electronic properties after the slab is connected to the leads and consider both metallic and Mott insulating slabs. When the correlated slab is metallic, the system relaxes to a steady-state that sustains a finite current. The zero-bias conductance is finite and independent of the degree of correlations within the slab as long as the system remains metallic. On the other hand, when the slab is in a Mott insulating state, the external bias leads to currents that are exponentially activated by charge tunneling across the Mott-Hubbard gap, consistent with the Landau-Zener dielectric breakdown scenario.<br />Comment: 18 pages, 17 figures

Details

Database :
arXiv
Journal :
Phys. Rev. B 91, 195124 (2015)
Publication Type :
Report
Accession number :
edsarx.1412.6415
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevB.91.195124