Back to Search
Start Over
Electronic transport and dynamics in correlated heterostructures
- Source :
- Phys. Rev. B 91, 195124 (2015)
- Publication Year :
- 2014
-
Abstract
- We investigate by means of the time-dependent Gutzwiller approximation the transport properties of a strongly-correlated slab subject to Hubbard repulsion and connected with to two metallic leads kept at a different electrochemical potential. We focus on the real-time evolution of the electronic properties after the slab is connected to the leads and consider both metallic and Mott insulating slabs. When the correlated slab is metallic, the system relaxes to a steady-state that sustains a finite current. The zero-bias conductance is finite and independent of the degree of correlations within the slab as long as the system remains metallic. On the other hand, when the slab is in a Mott insulating state, the external bias leads to currents that are exponentially activated by charge tunneling across the Mott-Hubbard gap, consistent with the Landau-Zener dielectric breakdown scenario.<br />Comment: 18 pages, 17 figures
- Subjects :
- Condensed Matter - Strongly Correlated Electrons
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. B 91, 195124 (2015)
- Publication Type :
- Report
- Accession number :
- edsarx.1412.6415
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevB.91.195124