Back to Search Start Over

Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

Authors :
IceCube Collaboration
Aartsen, M. G.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Ahrens, M.
Altmann, D.
Anderson, T.
Arguelles, C.
Arlen, T. C.
Auffenberg, J.
Bai, X.
Barwick, S. W.
Baum, V.
Bay, R.
Beatty, J. J.
Tjus, J. Becker
Becker, K. -H.
BenZvi, S.
Berghaus, P.
Berley, D.
Bernardini, E.
Bernhard, A.
Besson, D. Z.
Binder, G.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D. J.
Bohm, C.
Bos, F.
Bose, D.
Böser, S.
Botner, O.
Brayeur, L.
Bretz, H. -P.
Brown, A. M.
Buzinsky, N.
Casey, J.
Casier, M.
Cheung, E.
Chirkin, D.
Christov, A.
Christy, B.
Clark, K.
Classen, L.
Clevermann, F.
Coenders, S.
Cowen, D. F.
Silva, A. H. Cruz
Daughhetee, J.
Davis, J. C.
Day, M.
de André, J. P. A. M.
De Clercq, C.
Dembinski, H.
De Ridder, S.
Desiati, P.
de Vries, K. D.
de With, M.
DeYoung, T.
Díaz-Vélez, J. C.
Dumm, J. P.
Dunkman, M.
Eagan, R.
Eberhardt, B.
Ehrhardt, T.
Eichmann, B.
Eisch, J.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Fedynitch, A.
Feintzeig, J.
Felde, J.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Frantzen, K.
Fuchs, T.
Gaisser, T. K.
Gaior, R.
Gallagher, J.
Gerhardt, L.
Gier, D.
Gladstone, L.
Glüsenkamp, T.
Goldschmidt, A.
Golup, G.
Gonzalez, J. G.
Goodman, J. A.
Góra, D.
Grant, D.
Gretskov, P.
Groh, J. C.
Groß, A.
Ha, C.
Haack, C.
Ismail, A. Haj
Hallen, P.
Hallgren, A.
Halzen, F.
Hanson, K.
Hebecker, D.
Heereman, D.
Heinen, D.
Helbing, K.
Hellauer, R.
Hellwig, D.
Hickford, S.
Hill, G. C.
Hoffman, K. D.
Hoffmann, R.
Homeier, A.
Hoshina, K.
Huang, F.
Huelsnitz, W.
Hulth, P. O.
Hultqvist, K.
Ishihara, A.
Jacobi, E.
Jacobsen, J.
Japaridze, G. S.
Jero, K.
Jurkovic, M.
Kaminsky, B.
Kappes, A.
Karg, T.
Karle, A.
Kauer, M.
Keivani, A.
Kelley, J. L.
Kheirandish, A.
Kiryluk, J.
Kläs, J.
Klein, S. R.
Köhne, J. -H.
Kohnen, G.
Kolanoski, H.
Koob, A.
Köpke, L.
Kopper, C.
Kopper, S.
Koskinen, D. J.
Kowalski, M.
Kriesten, A.
Krings, K.
Kroll, G.
Kroll, M.
Kunnen, J.
Kurahashi, N.
Kuwabara, T.
Labare, M.
Lanfranchi, J. L.
Larsen, D. T.
Larson, M. J.
Lesiak-Bzdak, M.
Leuermann, M.
Lünemann, J.
Madsen, J.
Maggi, G.
Maruyama, R.
Mase, K.
Matis, H. S.
Maunu, R.
McNally, F.
Meagher, K.
Medici, M.
Meli, A.
Meures, T.
Miarecki, S.
Middell, E.
Middlemas, E.
Milke, N.
Miller, J.
Mohrmann, L.
Montaruli, T.
Morse, R.
Nahnhauer, R.
Naumann, U.
Niederhausen, H.
Nowicki, S. C.
Nygren, D. R.
Obertacke, A.
Olivas, A.
Omairat, A.
O'Murchadha, A.
Palczewski, T.
Paul, L.
Penek, Ö.
Pepper, J. A.
Heros, C. Pérez de los
Pfendner, C.
Pieloth, D.
Pinat, E.
Posselt, J.
Price, P. B.
Przybylski, G. T.
Pütz, J.
Quinnan, M.
Rädel, L.
Rameez, M.
Rawlins, K.
Redl, P.
Rees, I.
Reimann, R.
Relich, M.
Resconi, E.
Rhode, W.
Richman, M.
Riedel, B.
Robertson, S.
Rodrigues, J. P.
Rongen, M.
Rott, C.
Ruhe, T.
Ruzybayev, B.
Ryckbosch, D.
Saba, S. M.
Sander, H. -G.
Sandroos, J.
Santander, M.
Sarkar, S.
Schatto, K.
Scheriau, F.
Schmidt, T.
Schmitz, M.
Schoenen, S.
Schöneberg, S.
Schönwald, A.
Schukraft, A.
Schulte, L.
Schulz, O.
Seckel, D.
Sestayo, Y.
Seunarine, S.
Shanidze, R.
Smith, M. W. E.
Soldin, D.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stanisha, N. A.
Stasik, A.
Stezelberger, T.
Stokstad, R. G.
Stößl, A.
Strahler, E. A.
Ström, R.
Strotjohann, N. L.
Sullivan, G. W.
Sutherland, M.
Taavola, H.
Taboada, I.
Tamburro, A.
Ter-Antonyan, S.
Terliuk, A.
Tešić, G.
Tilav, S.
Toale, P. A.
Tobin, M. N.
Tosi, D.
Tselengidou, M.
Unger, E.
Usner, M.
Vallecorsa, S.
van Eijndhoven, N.
Vandenbroucke, J.
van Santen, J.
Vanheule, S.
Vehring, M.
Voge, M.
Vraeghe, M.
Walck, C.
Wallraff, M.
Weaver, Ch.
Wellons, M.
Wendt, C.
Westerhoff, S.
Whelan, B. J.
Whitehorn, N.
Wichary, C.
Wiebe, K.
Wiebusch, C. H.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, D. L.
Xu, X. W.
Xu, Y.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Ziemann, J.
Zoll, M.
Source :
Phys. Rev. Lett. 114, 171102 (2015)
Publication Year :
2015

Abstract

A diffuse flux of astrophysical neutrinos above $100\,\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\,\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of $(0:1:0)_\oplus$ is excluded at $3.3\sigma$, and a purely shower-like composition of $(1:0:0)_\oplus$ is excluded at $2.3\sigma$.<br />Comment: 8 pages, 3 figures. Submitted to PRL

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 114, 171102 (2015)
Publication Type :
Report
Accession number :
edsarx.1502.03376
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.114.171102