Back to Search Start Over

Low-energy constants and condensates from ALEPH hadronic $\tau$ decay data

Authors :
Boito, Diogo
Francis, Anthony
Golterman, Maarten
Hudspith, Renwick
Lewis, Randy
Maltman, Kim
Peris, Santiago
Source :
Phys. Rev. D 92, 114501 (2015)
Publication Year :
2015

Abstract

We determine the NLO chiral low-energy constant $L_{10}^r$, and combinations $C_{12}^r\pm C_{61}^r+C_{80}^r$, $C_{13}^r-C_{62}^r+C_{81}^r$, $C_{61}^r$, and $C_{87}^r$, of the NNLO chiral low-energy constants incorporating recently revised ALEPH results for the non-strange vector ($V$) and axial-vector ($A$) hadronic $\tau$ decay distributions and recently updated RBC/UKQCD lattice data for the non-strange $V-A$ two-point function. In the $\bar{\rm MS}$ scheme, at renormalization scale $\mu=770\ {MeV}$, we find $L_{10}^r=-0.00350(17)$, $C_{12}^r+C_{61}^r+C_{80}^r=0.00237(16)\ {GeV}^{-2}$, $C_{12}^r-C_{61}^r+C_{80}^r=-0.00056(15)\ {GeV}^{-2}$, $C_{13}^r-C_{62}^r+C_{81}^r=0.00046(9)\ {GeV}^{-2}$, $C_{61}^r=0.00146(15)\ {GeV}^{-2}$, and $C_{87}^r=0.00510(22)\ {GeV}^{-2}$. With errors here at or below the level expected for contributions of yet higher order in the chiral expansion, the analysis exhausts the possibilities of what can be meaningfully achieved in an NNLO analysis. We also consider the dimension six and dimension eight coefficients in the operator product expansion in the $V-A$ channel.<br />Comment: 16 pages, revtex

Details

Database :
arXiv
Journal :
Phys. Rev. D 92, 114501 (2015)
Publication Type :
Report
Accession number :
edsarx.1503.03450
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevD.92.114501