Back to Search
Start Over
A Theory of Feature Learning
- Publication Year :
- 2015
-
Abstract
- Feature Learning aims to extract relevant information contained in data sets in an automated fashion. It is driving force behind the current deep learning trend, a set of methods that have had widespread empirical success. What is lacking is a theoretical understanding of different feature learning schemes. This work provides a theoretical framework for feature learning and then characterizes when features can be learnt in an unsupervised fashion. We also provide means to judge the quality of features via rate-distortion theory and its generalizations.
- Subjects :
- Statistics - Machine Learning
Computer Science - Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1504.00083
- Document Type :
- Working Paper