Back to Search Start Over

Architecture-Aware Configuration and Scheduling of Matrix Multiplication on Asymmetric Multicore Processors

Authors :
Catalán, Sandra
Igual, Francisco D.
Mayo, Rafael
Rodríguez-Sánchez, Rafael
Quintana-Ortí, Enrique S.
Publication Year :
2015

Abstract

Asymmetric multicore processors (AMPs) have recently emerged as an appealing technology for severely energy-constrained environments, especially in mobile appliances where heterogeneity in applications is mainstream. In addition, given the growing interest for low-power high performance computing, this type of architectures is also being investigated as a means to improve the throughput-per-Watt of complex scientific applications. In this paper, we design and embed several architecture-aware optimizations into a multi-threaded general matrix multiplication (gemm), a key operation of the BLAS, in order to obtain a high performance implementation for ARM big.LITTLE AMPs. Our solution is based on the reference implementation of gemm in the BLIS library, and integrates a cache-aware configuration as well as asymmetric--static and dynamic scheduling strategies that carefully tune and distribute the operation's micro-kernels among the big and LITTLE cores of the target processor. The experimental results on a Samsung Exynos 5422, a system-on-chip with ARM Cortex-A15 and Cortex-A7 clusters that implements the big.LITTLE model, expose that our cache-aware versions of gemm with asymmetric scheduling attain important gains in performance with respect to its architecture-oblivious counterparts while exploiting all the resources of the AMP to deliver considerable energy efficiency.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1506.08988
Document Type :
Working Paper