Back to Search Start Over

Tri-connectivity Augmentation in Trees

Authors :
Dhanalakshmi, S.
Sadagopan, N.
Kumar, D. Sunil
Publication Year :
2016

Abstract

For a connected graph, a {\em minimum vertex separator} is a minimum set of vertices whose removal creates at least two connected components. The vertex connectivity of the graph refers to the size of the minimum vertex separator and a graph is $k$-vertex connected if its vertex connectivity is $k$, $k\geq 1$. Given a $k$-vertex connected graph $G$, the combinatorial problem {\em vertex connectivity augmentation} asks for a minimum number of edges whose augmentation to $G$ makes the resulting graph $(k+1)$-vertex connected. In this paper, we initiate the study of $r$-vertex connectivity augmentation whose objective is to find a $(k+r)$-vertex connected graph by augmenting a minimum number of edges to a $k$-vertex connected graph, $r \geq 1$. We shall investigate this question for the special case when $G$ is a tree and $r=2$. In particular, we present a polynomial-time algorithm to find a minimum set of edges whose augmentation to a tree makes it 3-vertex connected. Using lower bound arguments, we show that any tri-vertex connectivity augmentation of trees requires at least $\lceil \frac {2l_1+l_2}{2} \rceil$ edges, where $l_1$ and $l_2$ denote the number of degree one vertices and degree two vertices, respectively. Further, we establish that our algorithm indeed augments this number, thus yielding an optimum algorithm.<br />Comment: 10 pages, 2 figures, 3 algorithms, Presented in ICGTA 2015

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1601.00506
Document Type :
Working Paper