Back to Search
Start Over
High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array
- Publication Year :
- 2016
-
Abstract
- We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80\% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600$-$3053 and J1918$-$0642, implying pulsar and companion masses $m_p=1.22_{-0.35}^{+0.5} \text{M}_{\odot}$, $m_c = 0.21_{-0.04}^{+0.06} \text{M}_{\odot }$ and $m_p=1.25_{-0.4}^{+0.6} \text{M}_{\odot}$, $m_c = 0.23_{-0.05}^{+0.07} \text{M}_{\odot }$, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012$+$5307 and J1909$-$3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600$-$3053 and J1909$-$3744.<br />Comment: 42 pages, 11 figures. Accepted for publication in MNRAS
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1602.08511
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1093/mnras/stw483