Back to Search Start Over

High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

Authors :
Desvignes, G.
Caballero, R. N.
Lentati, L.
Verbiest, J. P. W.
Champion, D. J.
Stappers, B. W.
Janssen, G. H.
Lazarus, P.
Osłowski, S.
Babak, S.
Bassa, C. G.
Brem, P.
Burgay, M.
Cognard, I.
Gair, J. R.
Graikou, E.
Guillemot, L.
Hessels, J. W. T.
Jessner, A.
Jordan, C.
Karuppusamy, R.
Kramer, M.
Lassus, A.
Lazaridis, K.
Lee, K. J.
Liu, K.
Lyne, A. G.
McKee, J.
Mingarelli, C. M. F.
Perrodin, D.
Petiteau, A.
Possenti, A.
Purver, M. B.
Rosado, P. A.
Sanidas, S.
Sesana, A.
Shaifullah, G.
Smits, R.
Taylor, S. R.
Theureau, G.
Tiburzi, C.
van Haasteren, R.
Vecchio, A .
Publication Year :
2016

Abstract

We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80\% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600$-$3053 and J1918$-$0642, implying pulsar and companion masses $m_p=1.22_{-0.35}^{+0.5} \text{M}_{\odot}$, $m_c = 0.21_{-0.04}^{+0.06} \text{M}_{\odot }$ and $m_p=1.25_{-0.4}^{+0.6} \text{M}_{\odot}$, $m_c = 0.23_{-0.05}^{+0.07} \text{M}_{\odot }$, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012$+$5307 and J1909$-$3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600$-$3053 and J1909$-$3744.<br />Comment: 42 pages, 11 figures. Accepted for publication in MNRAS

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1602.08511
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stw483