Back to Search Start Over

Weak and Strong Solutions to the Inverse-Square Brachistochrone Problem on Circular and Annular Domains

Authors :
Grimm, Christopher
Gemmer, John A.
Source :
Involve 10 (2017) 833-856
Publication Year :
2016

Abstract

In this paper we study the brachistochrone problem in an inverse-square gravitational field on the unit disk. We show that the time optimal solutions consist of either smooth strong solutions to the Euler-Lagrange equation or weak solutions formed by appropriately patched together strong solutions. This combination of weak and strong solutions completely foliates the unit disk. We also consider the problem on annular domains and show that the time optimal paths foliate the annulus. These foliations on the annular domains converge to the foliation on the unit disk in the limit of vanishing inner radius.

Details

Database :
arXiv
Journal :
Involve 10 (2017) 833-856
Publication Type :
Report
Accession number :
edsarx.1605.01486
Document Type :
Working Paper
Full Text :
https://doi.org/10.2140/involve.2017.10.833