Back to Search Start Over

Revealing the multi-bonding state between hydrogen and graphene-supported Ti clusters

Authors :
Takahashi, Keisuke
Isobe, Shigehito
Omori, Kengo
Mashoff, Torge
Convertino, Domenica
Miseikis, Vaidotas
Coletti, Camilla
Tozzini, Valentina
Heun, Stefan
Source :
J. Phys. Chem. C 2016, 120, 12974-12979
Publication Year :
2016

Abstract

Hydrogen adsorption on graphene-supported metal clusters has brought much controversy due to the complex nature of the bonding between hydrogen and metal clusters. The bond types of hydrogen and graphene-supported Ti clusters are experimentally and theoretically investigated. Transmission electron microscopy shows that Ti clusters of nanometer-size are formed on graphene. Thermal desorption spectroscopy captures three hydrogen desorption peaks from hydrogenated graphene-supported Ti clusters. First principle calculations also found three types of interaction: Two types of bonds with different partial ionic character and physisorption. The physical origin for this rests on the charge state of the Ti clusters: when Ti clusters are neutral, H2 is dissociated, and H forms bonds with the Ti cluster. On the other hand, H2 is adsorbed in molecular form on positively charged Ti clusters, resulting in physisorption. Thus, this work clarifies the bonding mechanisms of hydrogen on graphene-supported Ti clusters.

Details

Database :
arXiv
Journal :
J. Phys. Chem. C 2016, 120, 12974-12979
Publication Type :
Report
Accession number :
edsarx.1608.01146
Document Type :
Working Paper
Full Text :
https://doi.org/10.1021/acs.jpcc.6b05207