Back to Search Start Over

Nonlinear waves in stratified Taylor--Couette flow. Part 1. Layer formation

Authors :
Leclercq, Colin
Partridge, Jamie L.
Augier, Pierre
Caulfield, Colm-Cille P.
Dalziel, Stuart B.
Linden, Paul F.
Publication Year :
2016

Abstract

This paper is the first part of a two-fold study of mixing, i.e. the formation of layers and upwelling of buoyancy, in axially stratified Taylor--Couette flow, with fixed outer cylinder. Using linear analysis and direct numerical simulation, we show the critical role played by non-axisymmetric instability modes, despite the fact that the flow is centrifugally unstable in the sense of Rayleigh's criterion. Interactions between helical modes of opposite handedness leads to the formation of nonlinear coherent structures: (mixed)-ribbons and (mixed)-cross-spirals. These give birth to complex density interface patterns, seemingly appearing and disappearing periodically as the coherent structure slowly rotates around the annulus. These coherent structures seem to be responsible for the formation of layers reported in a recent experiment by Oglethorpe et al. (2013). We distinguish `dynamic layering', instantaneous, localized and caused by the vortical motions, from `static layering' corresponding to the formation of a `staircase profile' in the adiabatically sorted background density. The latter only occurs at large enough Schmidt number, revealing the significant impact of the Schmidt number in the layering process.

Subjects

Subjects :
Physics - Fluid Dynamics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1609.02885
Document Type :
Working Paper