Back to Search
Start Over
Multiply-warped product metrics and reduction of Einstein equations
- Source :
- International Journal of Geometric Methods in Modern Physics, Vol. 14, 1750021 (2017)
- Publication Year :
- 2016
-
Abstract
- It is shown that for every multidimensional metric in the multiply warped product form $\bar{M} = K\times_{f_1} M_1\times_{f_2}M_2$ with warp functions $f_1$, $f_2$, associated to the submanifolds $M_1$, $M_2$ of dimensions $n_1$, $n_2$ respectively, one can find the corresponding Einstein equations $\bar{G}_{AB}=-\bar{\Lambda}\bar{g}_{AB}$, with cosmological constant $\bar{\Lambda}$, which are reducible to the Einstein equations $G_{\alpha\beta} = -\Lambda_1 g_{\alpha\beta}$ and $G_{ij} =-\Lambda_2 h_{ij}$ on the submanifolds $M_1$, $M_2$, with cosmological constants ${\Lambda_1}$ and ${\Lambda_2}$, respectively, where $\bar{\Lambda}$, ${\Lambda_1}$ and ${\Lambda_2}$ are functions of ${f_1}$, ${f_2}$ and $n_1$, $n_2$.<br />Comment: 12 pages, Reference updated
- Subjects :
- General Relativity and Quantum Cosmology
Mathematical Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- International Journal of Geometric Methods in Modern Physics, Vol. 14, 1750021 (2017)
- Publication Type :
- Report
- Accession number :
- edsarx.1609.07659
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1142/S0219887817500219