Back to Search Start Over

Shifted Character Sums with Multiplicative Coefficients, II

Authors :
Gong, K.
Jia, C.
Korolev, M. A.
Publication Year :
2016

Abstract

Let $f(n)$ be a multiplicative function with $|f(n)|\leq 1, q$ be a prime number and $a$ be an integer with $(a, q)=1, \chi$ be a non-principal Dirichlet character modulo $q$. Let $\varepsilon$ be a sufficiently small positive constant, $A$ be a large constant, $q^{\frac12+\varepsilon}\ll N\ll q^A$. In this paper, we shall prove that $$ \sum_{n\leq N}f(n)\chi(n+a)\ll N\frac{\log\log q}{\log q} $$ and that $$ \sum_{n\leq N}f(n)\chi(n+a_1)\cdots\chi(n+a_t)\ll N\frac{\log\log q}{\log q}, $$ where $t\geq 2, a_1, \ldots, a_t$ are distinct integers modulo $q$.

Subjects

Subjects :
Mathematics - Number Theory
11L40

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1611.06577
Document Type :
Working Paper