Back to Search
Start Over
Long-range interactions in the effective low energy Hamiltonian of Sr2IrO4: a core level resonant inelastic x-ray scattering study
- Source :
- Phys. Rev. B 95, 205123 (2017)
- Publication Year :
- 2016
-
Abstract
- We have investigated the electronic structure of Sr2IrO4 using core level resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t2g orbitals are practically degenerate in energy. We uncovered that covalency in Sr2IrO4, and generally in iridates, is very large with substantial oxygen ligand hole character in the Ir t2g Wannier orbitals. This has far reaching consequences, as not only the onsite crystal-field energies are determined by the long range crystal-structure, but, more significantly, magnetic exchange interactions will have long range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d^5 materials that can host compass-like magnetic interactions.
- Subjects :
- Condensed Matter - Strongly Correlated Electrons
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. B 95, 205123 (2017)
- Publication Type :
- Report
- Accession number :
- edsarx.1612.00074
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevB.95.205123