Back to Search
Start Over
The isoperimetric number of the incidence graph of PG(n,q)
- Source :
- Electronic Journal of Combinatorics 25.3 (2018), 3-20
- Publication Year :
- 2016
-
Abstract
- Let $\Gamma_{n,q}$ be the point-hyperplane incidence graph of the projective space $\operatorname{PG}(n,q)$, where $n \ge 2$ is an integer and $q$ a prime power. We determine the order of magnitude of $1-i_V(\Gamma_{n,q})$, where $i_V(\Gamma_{n,q})$ is the vertex-isoperimetric number of $\Gamma_{n,q}$. We also obtain the exact values of $i_V(\Gamma_{2,q})$ and the related incidence-free number of $\Gamma_{2,q}$ for $q \le 16$.
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Journal :
- Electronic Journal of Combinatorics 25.3 (2018), 3-20
- Publication Type :
- Report
- Accession number :
- edsarx.1612.03293
- Document Type :
- Working Paper