Back to Search Start Over

The isoperimetric number of the incidence graph of PG(n,q)

Authors :
Price, Andrew Elvey
Surani, Muhammad Adib
Zhou, Sanming
Source :
Electronic Journal of Combinatorics 25.3 (2018), 3-20
Publication Year :
2016

Abstract

Let $\Gamma_{n,q}$ be the point-hyperplane incidence graph of the projective space $\operatorname{PG}(n,q)$, where $n \ge 2$ is an integer and $q$ a prime power. We determine the order of magnitude of $1-i_V(\Gamma_{n,q})$, where $i_V(\Gamma_{n,q})$ is the vertex-isoperimetric number of $\Gamma_{n,q}$. We also obtain the exact values of $i_V(\Gamma_{2,q})$ and the related incidence-free number of $\Gamma_{2,q}$ for $q \le 16$.

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Journal :
Electronic Journal of Combinatorics 25.3 (2018), 3-20
Publication Type :
Report
Accession number :
edsarx.1612.03293
Document Type :
Working Paper