Back to Search
Start Over
Depth-Based Visual Servoing Using Low-Accurate Arm
- Publication Year :
- 2016
-
Abstract
- This paper proposes a visual-servoing method dedicated to grasping of daily-life objects. In order to obtain an affordable solution, we use a low-accurate robotic arm. Our method corrects errors by using an RGB-D sensor. It is based on SURF invariant features which allows us to perform object recognition at a high frame rate. We define regions of interest based on depth segmentation, and we use them to speed-up the recognition and to improve reliability. The system has been tested on a real-world scenario. In spite of the lack of accuracy of all the components and the uncontrolled environment, it grasps objects successfully on more than 95 percents of the trials.<br />Comment: To appear in SCIS & ISIS 2016 proceedings
- Subjects :
- Computer Science - Robotics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1612.03784
- Document Type :
- Working Paper