Back to Search
Start Over
On Achievable Rates of AWGN Energy-Harvesting Channels with Block Energy Arrival and Non-Vanishing Error Probabilities
- Publication Year :
- 2017
-
Abstract
- This paper investigates the achievable rates of an additive white Gaussian noise (AWGN) energy-harvesting (EH) channel with an infinite battery. The EH process is characterized by a sequence of blocks of harvested energy, which is known causally at the source. The harvested energy remains constant within a block while the harvested energy across different blocks is characterized by a sequence of independent and identically distributed (i.i.d.) random variables. The blocks have length $L$, which can be interpreted as the coherence time of the energy arrival process. If $L$ is a constant or grows sublinearly in the blocklength $n$, we fully characterize the first-order term in the asymptotic expansion of the maximum transmission rate subject to a fixed tolerable error probability $\varepsilon$. The first-order term is known as the $\varepsilon$-capacity. In addition, we obtain lower and upper bounds on the second-order term in the asymptotic expansion, which reveal that the second order term scales as $\sqrt{\frac{L}{n}}$ for any $\varepsilon$ less than $1/2$. The lower bound is obtained through analyzing the save-and-transmit strategy. If $L$ grows linearly in $n$, we obtain lower and upper bounds on the $\varepsilon$-capacity, which coincide whenever the cumulative distribution function (cdf) of the EH random variable is continuous and strictly increasing. In order to achieve the lower bound, we have proposed a novel adaptive save-and-transmit strategy, which chooses different save-and-transmit codes across different blocks according to the energy variation across the blocks.<br />Comment: 51 pages
- Subjects :
- Computer Science - Information Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1701.02088
- Document Type :
- Working Paper