Back to Search
Start Over
Learning Hierarchical Features from Generative Models
- Publication Year :
- 2017
-
Abstract
- Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning tasks. Generative models, on the other hand, have benefited less from hierarchical models with multiple layers of latent variables. In this paper, we prove that hierarchical latent variable models do not take advantage of the hierarchical structure when trained with existing variational methods, and provide some limitations on the kind of features existing models can learn. Finally we propose an alternative architecture that do not suffer from these limitations. Our model is able to learn highly interpretable and disentangled hierarchical features on several natural image datasets with no task specific regularization or prior knowledge.<br />Comment: ICML'2017
- Subjects :
- Computer Science - Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1702.08396
- Document Type :
- Working Paper