Back to Search Start Over

DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution

Authors :
Vandal, Thomas
Kodra, Evan
Ganguly, Sangram
Michaelis, Andrew
Nemani, Ramakrishna
Ganguly, Auroop R
Publication Year :
2017

Abstract

The impacts of climate change are felt by most critical systems, such as infrastructure, ecological systems, and power-plants. However, contemporary Earth System Models (ESM) are run at spatial resolutions too coarse for assessing effects this localized. Local scale projections can be obtained using statistical downscaling, a technique which uses historical climate observations to learn a low-resolution to high-resolution mapping. Depending on statistical modeling choices, downscaled projections have been shown to vary significantly terms of accuracy and reliability. The spatio-temporal nature of the climate system motivates the adaptation of super-resolution image processing techniques to statistical downscaling. In our work, we present DeepSD, a generalized stacked super resolution convolutional neural network (SRCNN) framework for statistical downscaling of climate variables. DeepSD augments SRCNN with multi-scale input channels to maximize predictability in statistical downscaling. We provide a comparison with Bias Correction Spatial Disaggregation as well as three Automated-Statistical Downscaling approaches in downscaling daily precipitation from 1 degree (~100km) to 1/8 degrees (~12.5km) over the Continental United States. Furthermore, a framework using the NASA Earth Exchange (NEX) platform is discussed for downscaling more than 20 ESM models with multiple emission scenarios.<br />Comment: 9 pages, 5 Figures, 2 Tables

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1703.03126
Document Type :
Working Paper