Back to Search Start Over

EnVision: understanding why our most Earth-like neighbour is so different

Authors :
Ghail, Richard
Wilson, Colin
Widemann, Thomas
Bruzzone, Lorenzo
Dumoulin, Caroline
Helbert, Jörn
Herrick, Robbie
Marcq, Emmanuel
Mason, Philippa
Rosenblatt, Pascal
Vandaele, Ann Carine
Burtz, Louis-Jerome
Publication Year :
2017

Abstract

This document is the EnVision Venus orbiter proposal, submitted in October 2016 in response to ESA's M5 call for Medium-size missions for its Science Programme, for launch in 2029. Why are the terrestrial planets so different? Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. Its original atmosphere was probably similar to that of early Earth, with abundant water that would have been liquid under the young sun's fainter output. Even today, with its global cloud cover, the surface of Venus receives less solar energy than does Earth, so why did a moderate climate ensue here but a catastrophic runaway greenhouse on Venus? How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? Following the primarily atmospheric focus of Venus Express, we propose a new Venus orbiter named EnVision, to focus on Venus' geology and geochemical cycles, seeking evidence for present and past activity. The payload comprises a state-of-the-art S-band radar which will be able to return imagery at spatial resolutions of 1 - 30 m, and capable of measuring cm-scale deformation; this is complemented by subsurface radar, IR and UV spectrometers to map volcanic gases, and by geodetic investigations.<br />Comment: ES M5 mission proposal

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1703.09010
Document Type :
Working Paper