Back to Search
Start Over
On MASAs in $q$-deformed von Neumann algebras
- Source :
- Pacific J. Math. 302 (2019) 1-21
- Publication Year :
- 2017
-
Abstract
- We study certain $q$-deformed analogues of the maximal abelian subalgebras of the group von Neumann algebras of free groups. The radial subalgebra is defined for Hecke deformed von Neumann algebras of the Coxeter group $(\mathbb{Z}/{2\mathbb{Z}})^{\star k}$ and shown to be a maximal abelian subalgebra which is singular and with Puk\'anszky invariant $\{\infty\}$. Further all non-equal generator masas in the $q$-deformed Gaussian von Neumann algebras are shown to be mutually non-unitarily conjugate.<br />Comment: 16 pages
- Subjects :
- Mathematics - Operator Algebras
Primary: 46L10, Secondary: 46L65
Subjects
Details
- Database :
- arXiv
- Journal :
- Pacific J. Math. 302 (2019) 1-21
- Publication Type :
- Report
- Accession number :
- edsarx.1704.02804
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.2140/pjm.2019.302.1