Back to Search Start Over

Outbursts of the intermediate-mass black hole HLX-1: a wind instability scenario

Authors :
Soria, Roberto
Musaeva, Aina
Wu, Kinwah
Zampieri, Luca
Federle, Sara
Urquhart, Ryan
van der Helm, Edwin
Farrell, Sean
Publication Year :
2017

Abstract

We model the intermediate-mass black hole HLX-1, using the Hubble Space Telescope, XMM-Newton and Swift. We quantify the relative contributions of a bluer component, function of X-ray irradiation, and a redder component, constant and likely coming from an old stellar population. We estimate a black hole mass of about (2^{+2}_{-1}) x 10^4 M_{sun}, a spin parameter a/M ~ 0.9 for moderately face-on view, and a peak outburst luminosity of about 0.3 times the Eddington luminosity. We discuss the discrepancy between the characteristic sizes inferred from the short X-ray timescale (R ~ a few 10^{11} cm) and from the optical emitter (R sqrt[cos theta] ~ 2.2 x 10^{13} cm). One possibility is that the optical emitter is a circumbinary disk; however, we disfavour this scenario because it would require a very small donor star. A more plausible scenario is that the disk is large but only the inner annuli are involved in the X-ray outburst. We propose that the recurrent outbursts are caused by an accretion-rate oscillation driven by wind instability in the inner disk. We argue that the system has a long-term-average accretion rate of a few percent Eddington, just below the upper limit of the low/hard state; a wind-driven oscillation can trigger transitions to the high/soft state, with a recurrence period of ~1 year (much longer than the binary period, which we estimate as ~10 days). The oscillation that dominated the system in the last decade is now damped such that the accretion rate no longer reaches the level required to trigger a transition. Finally, we highlight similarities between disk winds in HLX-1 and in the Galactic black hole V404 Cyg.<br />Comment: 22 pages, 8 figures, accepted for publication in MNRAS

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1704.05468
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stx888