Back to Search
Start Over
Working hard to know your neighbor's margins: Local descriptor learning loss
- Publication Year :
- 2017
-
Abstract
- We introduce a novel loss for learning local feature descriptors which is inspired by the Lowe's matching criterion for SIFT. We show that the proposed loss that maximizes the distance between the closest positive and closest negative patch in the batch is better than complex regularization methods; it works well for both shallow and deep convolution network architectures. Applying the novel loss to the L2Net CNN architecture results in a compact descriptor -- it has the same dimensionality as SIFT (128) that shows state-of-art performance in wide baseline stereo, patch verification and instance retrieval benchmarks. It is fast, computing a descriptor takes about 1 millisecond on a low-end GPU.<br />Comment: Post-NIPS-2017 update. Better hyperparameters and better results on HPatches + Brown dataset, + couple of references
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1705.10872
- Document Type :
- Working Paper