Back to Search
Start Over
Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes
- Publication Year :
- 2017
-
Abstract
- We implement the KORAL code to perform two sets of very long general relativistic radiation magnetohydrodynamic simulations of an axisymmetric optically thin magnetized flow around a non-rotating black hole: one with a new term in the electromagnetic field tensor due to the radiation pressure felt by the plasma electrons on the comoving frame of the electron-proton plasma, and one without. The source of the radiation is the accretion flow itself. Without the new term, the system evolves to a standard accretion flow due to the development of the magneto-rotational instability (MRI). With the new term, however, the system eventually evolves to a magnetically arrested state (MAD) in which a large scale jet-like magnetic field threads the black hole horizon. Our results confirm the secular action of the Cosmic Battery in accretion flows around astrophysical black holes.<br />Comment: 7 pages, 4 figures, submitted to Monthly Notices
- Subjects :
- Astrophysics - High Energy Astrophysical Phenomena
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1705.11021
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1093/mnras/stx2249