Back to Search
Start Over
Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors
- Source :
- Sci. Adv. 3, e1602617 (2017)
- Publication Year :
- 2017
-
Abstract
- Graphene-based photodetectors have demonstrated mechanical flexibility, large operating bandwidth, and broadband spectral response. However, their linear dynamic range (LDR) is limited by graphene's intrinsichot-carrier dynamics, which causes deviation from a linear photoresponse at low incident powers. At the same time, multiplication of hot carriers causes the photoactive region to be smeared over distances of a few micro-meters, limiting the use of graphene in high-resolution applications. We present a novel method for engineer-ing photoactive junctions in FeCl3-intercalated graphene using laser irradiation. Photocurrent measured at these planar junctions shows an extraordinary linear response with an LDR value at least 4500 times larger than that of other graphene devices (44 dB) while maintaining high stability against environmental contamination without the need for encapsulation. The observed photoresponse is purely photovoltaic, demonstrating complete quenching of hot-carrier effects. These results pave the way toward the design of ultrathin photode-tectors with unprecedented LDR for high-definition imaging and sensing.<br />Comment: 44 pages, includes supplementary
Details
- Database :
- arXiv
- Journal :
- Sci. Adv. 3, e1602617 (2017)
- Publication Type :
- Report
- Accession number :
- edsarx.1706.00006
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1126/sciadv.1602617