Back to Search Start Over

A Markov State Modeling analysis of sliding dynamics of a 2D model

Authors :
Teruzzi, M.
Pellegrini, F.
Laio, A.
Tosatti, E.
Source :
The Journal of Chemical Physics 147, 152721 (2017)
Publication Year :
2017

Abstract

Non-equilibrium Markov State Modeling (MSM) has recently been proposed [Phys. Rev. E 94, 053001 (2016)] as a possible route to construct a physical theory of sliding friction from a long steady state atomistic simulation: the approach builds a small set of collective variables, which obey a transition-matrix based equation of motion, faithfully describing the slow motions of the system. A crucial question is whether this approach can be extended from the original 1D small size demo to larger and more realistic size systems, without an inordinate increase of the number and complexity of the collective variables. Here we present a direct application of the MSM scheme to the sliding of an island made of over 1000 harmonically bound particles over a 2D periodic potential. Based on a totally unprejudiced phase space metric and without requiring any special doctoring, we find that here too the scheme allows extracting a very small number of slow variables, necessary and sufficient to describe the dynamics of island sliding.<br />Comment: 6 pages, 5 figures

Details

Database :
arXiv
Journal :
The Journal of Chemical Physics 147, 152721 (2017)
Publication Type :
Report
Accession number :
edsarx.1706.04505
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/1.4986458