Back to Search
Start Over
On the $L^\infty-$maximization of the solution of Poisson's equation: Brezis-Gallouet-Wainger type inequalities and applications
- Publication Year :
- 2017
-
Abstract
- For the solution of the Poisson problem with an $L^\infty$ right hand side \begin{equation*} \begin{cases} -\Delta u(x) = f (x) & \mbox{in } D, u=0 & \mbox{on } \partial D, \end{cases} \end{equation*} we derive an optimal estimate of the form $$ \|u\|_\infty\leq \|f\|_\infty \sigma_D(\|f\|_1/\|f\|_\infty), $$ where $\sigma_D$ is a modulus of continuity defined in the interval $[0, |D|]$ and depends only on the domain $D$. In the case when $f\geq 0$ in $D$ the inequality is optimal for any domain and for any values of $\|f\|_1$ and $\|f\|_\infty.$ We also show that $$ \sigma_D(t)\leq\sigma_B(t),\text{ for }t\in[0,|D|], $$ where $B$ is a ball and $|B|=|D|$. Using this optimality property of $\sigma,$ we derive Brezis-Galloute-Wainger type inequalities on the $L^\infty$ norm of $u$ in terms of the $L^1$ and $L^\infty$ norms of $f.$ The estimates have explicit coefficients depending on the space dimension $n$ and turn to equality for a specific choice of $u$ when the domain $D$ is a ball. As an application we derive $L^\infty-L^1$ estimates on the $k-$th Laplace eigenfunction of the domain $D.$<br />Comment: 10 pages
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1707.07557
- Document Type :
- Working Paper